Hydrol. Earth Sys. Sci. Discuss., 2, 1449–1502, 2005 www.copernicus.org/EGU/hess/hessd/2/1449/ SRef-ID: 1812-2116/hessd/2005-2-1449 European Geosciences Union

Papers published in *Hydrology and Earth System Sciences Discussions* are under open-access review for the journal *Hydrology and Earth System Sciences*

Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR)

P. Leidenberger, B. Oswald, and K. Roth

Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany Received: 29 July 2005 – Accepted: 5 August 2005 – Published: 15 August 2005 Correspondence to: B. Oswald (benedikt.oswald@iup.uni-heidelberg.de) © 2005 Author(s). This work is licensed under a Creative Commons License.

Abstract

We present a numerical model for time domain reflectometry (TDR) signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We de-⁵ rive analytical expressions for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.

1. Introduction

- 1.1. Motivation
- ¹⁵ Time Domain Reflectometry (TDR) has become an indispensable technique for measuring the water content of soils in hydrology, civil engineering, agriculture and related fields over the last years, for a review see Robinson et al. (2003). Early realizations of the method delivered a single water content θ from a TDR trace (Birchak et al., 1974; Topp et al., 1980, 1982a,b; Topp and Davis, 1985; Dasberg and Dalton, 1985).
- A second phase of TDR development has targeted to deliver spatially resolved water content profiles along the TDR probe (Yanuka et al., 1988; Hook et al., 1992; Dasberg and Hopmans, 1992; Pereira, 1997; Todoroff et al., 1998; Feng et al., 1999; Oswald, 2000; Oswald et al., 2003; Lin, 2003; Heimovaara et al., 2004; Schlaeger, 2005). Because the dielectric permittivity of soil material typically depends considerably on
- ²⁵ frequency, particularly if there are clay and loam components (Hoekstra and Delaney,

HESSD

2, 1449–1502, 2005

Efficient and dispersive TDR

1974; Sposito and Prost, 1982; Ishida et al., 2000; Huisman et al., 2004; Robinson et al., 2005), in a third phase methods have been studied to recover the average dispersive dielectric parameters from TDR traces (Heimovaara, 1994; Heimovaara et al., 1996; Hilhorst et al., 2001; Lin, 2003). Clearly, the next logical step are methods to extract the full dielectric profile from a TDR trace.

1.2. Objectives

10

15

In this paper we study an efficient method for the reconstruction of spatially resolved profiles of water content and electrical conductivity from TDR traces assuming dispersive dielectric properties of the soil material along the probe. In particular, we want to reconstruct field measured TDR traces (Wollschläger and Roth, 2005) which could not be successfully reconstructed with techniques used by Roth et al. (1990).

We use the Debye model to account for dispersive dielectric properties (Debye, 1929). While the three-rod probe is often employed for TDR measurements, there is only scarce material on its transmission line parameters, particularly inductance, capacitance and conductance per unit length. We therefore derive an analytical model for these parameters under the approximation of small conductor diameter D with respect to conductor distance d.

2. Methods

The propagation of TDR signals, voltage v(x, t) and current i(x, t), on probes of two or more conducting rods is described by transmission line theory (e.g. Ramo et al., 1984). Our approach for numerically modeling TDR probes is essentially based on Oswald et al. (2003). A transmission line is described by capacitance C', conductance G', inductance L' and resistance R', all per unit length. These parameters are functions of the probe geometry and the dielectric and ohmic properties of the ma-²⁵ terial between the probe's conductors $C'=C'(d, D, \epsilon)$, $G'=G'(d, D, \sigma)$, $L'=L'(d, D, \mu)$

and $R'=R'(d, D, R_{skin})$ where *d* is the spacing between the probe rods (for a three wire probe this is the distance between neighboring rods) and *D* is the diameter of the probe rods.

For piecewise constant transmission line parameters, voltage v(x, t) and current i(x, t) are described by the the following two linear first order, partial differential equations (PDE) (Ramo et al., 1984):

$$\frac{\partial v}{\partial x} = -\left(R' + L'\frac{\partial}{\partial t}\right)i\tag{1}$$

$$\frac{\partial i}{\partial x} = -\left(G' + C'\frac{\partial}{\partial t}\right)v.$$
(2)

The piecewise constant dielectric permittivity e and ohmic conductivity σ can be discontinuous, because the water content θ in general is discontinuous across soil boundaries. With a variable water content $\theta(x)$ along the probe the parameters G' and C' vary accordingly; L' is assumed to be constant, because the materials' magnetic permeability equals μ_0 ; skin resistance R' is neglected in the current study.

For extracting dielectric and ohmic profiles from measured TDR traces we use an ¹⁵ iterative, globally optimizing approach based on Oswald et al. (2003), in order to solve the non-linear, inverse, electromagnetic problem. The global optimization method uses genetic algorithms form Levine (1996).

To calculate the TDR signal for a given dielectric profile we numerically solve Eqs. (1) and (2) using a finite difference time domain (FDTD) approach (Taflove, 1998). The spatial discretization of the *x* coordinate is given by $x = k\Delta x$ and temporal discretization by $t = n\Delta t$ with:

$$x \le \frac{\lambda_{\min}}{10}$$

Δ

where λ_{\min} is the minimum wavelength present in the system, which in non magnetic material, is determined by the maximum frequency f_{\max} and the largest permittivity

(3)

HEGGU

value ε_{max} (Taflove, 1998):

$$\lambda_{\min} = \frac{c_0}{f_{\max}\sqrt{\epsilon_{r,\max}}}$$

We estimate the maximum relevant frequency from

$$t_{rise} \cdot f_{3dB} = 0.34$$
, (5)

⁵ an expression widely used in electrical engineering. It refers to a Gaussian type time domain waveform with rise time t_{rise} . This is a good model for a TDR input signal. Later on we choose an "explicit" time domain integration. To keep it stable, there is the upper limit for Δt (Taflove, 1998; Kunz and Luebbers, 1993):

$$\Delta t \le \frac{\Delta x}{c_0}$$

10 2.1. Numerical solution of transmission line equations

Numerically, there are three spatially different regions, at the beginning of the probe x=0, at the end of the probe, $x=\Lambda$, and in-between, $x<0<\Lambda$. At the ends of the probe, the discretized set of PDE is connected to a lumped electrical model, such as voltage sources or resistive-capacitive terminations.

15 2.1.1. Boundary conditions

The termination of a TDR probe is modeled with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. The voltage current relationship of this parallel circuit is given by

$$I_T = \frac{V_T}{R_T} + C_T \frac{\partial V_T}{\partial t}$$

(4)

(6)

(7)

2, 1449–1502, 2005

HESSD

Efficient and dispersive TDR

where I_T is the current at the end of the TDR probe through the terminal resistor R_T and the terminal capacitance C_T . V_T is the voltage drop at the end of the TDR probe over the parallel circuit of R_T and C_T . To couple this parallel circuit to the distributed transmission line model we use Eq. (1). We truncate the FDTD scheme of the probe through coupling Eqs. (1) and (7) using the definitions:

$$i(x = \Lambda, t) = I_T \tag{8}$$

$$v(x = \Lambda, t) = V_T. \tag{9}$$

We rewrite Eq. (1)

$$\frac{\partial v}{\partial x} = -R'_k i - L'_k \frac{\partial i}{\partial t} \bigg|_{x=\Lambda}$$
(10)

5

 $\Rightarrow \frac{\partial}{\partial x} v \left(x = \Lambda, t \right) = -R'_{\kappa} i \left(\Lambda, t \right) - L'_{\kappa} \frac{\partial}{\partial t} i \left(\Lambda, t \right).$ (11)

All current terms in Eq. (11) are replaced by inserting Eq. (7). Note that the currents in the expressions, both constitutive and first-order PDE, are equivalent. Also, the voltages at the end of the probe and across the resistor are equal:

$$\frac{\partial}{\partial x}v\left(\Lambda,t\right) = -\frac{R'_{K}}{R_{T}}v\left(\Lambda,t\right) - R'_{K}C_{T}\frac{\partial}{\partial t}v\left(\Lambda,t\right) - \frac{L'_{K}}{R_{T}}\frac{\partial}{\partial t}v\left(\Lambda,t\right) - L'_{K}C_{T}\frac{\partial^{2}}{\partial t^{2}}v\left(\Lambda,t\right).$$
(12)

We select a suitable discretization of Eq. (12): (i) the discretization must result in a fully explicit update scheme; (ii) the scheme must not require values outside the spatial computational domain x = [0...Λ]. We choose the "backward differencing in space" and "forward differencing in time" scheme using the Taylor series expansion of first-order accuracy. The sum of backward and forward second-order Taylor series expansion in time provides the second order time derivative. With the usual notation we write the discretized version of Eq. (12):

$$\left(\frac{v_{\mathcal{K}}^{n}-v_{\mathcal{K}-1}^{n}}{\Delta x}\right) = -\frac{R_{\mathcal{K}}'}{R_{\mathcal{T}}}v_{\mathcal{K}}^{n} - R_{\mathcal{K}}'C_{\mathcal{T}}\left(\frac{v_{\mathcal{K}}^{n+1}-v_{\mathcal{K}}^{n}}{\Delta t}\right)$$
1454

HESSD

2, 1449–1502, 2005

$$-\frac{L'_{\kappa}}{R_{\tau}}\left(\frac{v_{\kappa}^{n+1}-v_{\kappa}^{n}}{\Delta t}\right)-L'_{\kappa}C_{\tau}\left(\frac{v_{\kappa}^{n+1}-2v_{\kappa}^{n}+v_{\kappa}^{n-1}}{\Delta t^{2}}\right).$$
(13)

Finally, by rearranging Eq. (13) we obtain the explicit update procedure, in the time domain, for the voltage at the end of the TDR probe $x = \Lambda$.

$$v_{\mathcal{K}}^{n+1} = \left(\frac{R_{\mathcal{K}}'C_{\mathcal{T}}}{\Delta t} + \frac{L_{\mathcal{K}}'}{R_{\mathcal{T}}\Delta t} + \frac{L_{\mathcal{K}}'C_{\mathcal{T}}}{\Delta t^2}\right)^{-1} \\ \cdot \left[v_{\mathcal{K}}^{n}\left(\frac{2L_{\mathcal{K}}'C_{\mathcal{T}}}{\Delta t^2} + \frac{L_{\mathcal{K}}'}{R_{\mathcal{T}}\Delta t} - \frac{R_{\mathcal{K}}'C_{\mathcal{T}}}{\Delta t} - \frac{R_{\mathcal{K}}'}{R_{\mathcal{T}}} - \frac{1}{\Delta x}\right) \\ - \frac{L_{\mathcal{K}}'C_{\mathcal{T}}}{\Delta t^2}v_{\mathcal{K}}^{n-1} + \frac{1}{\Delta x}v_{\mathcal{K}-1}^{n}\right]$$
(14)

and similarly for the current at $x = \Lambda$ from, using Eq. (7):

5

$$i_{K}^{n+1} = \frac{1}{R_{T}} v_{K}^{n+1} + C_{T} \frac{v_{K}^{n+1} - v_{K}^{n}}{\Delta t}.$$
(15)

As special cases we mention $C_T = 0$, $R_T < \infty$ and $C_T = 0$, $R_T \rightarrow \infty$. An overview of the equations of all these boundary conditions is given in Table 1. We have implemented them in our TDR code, so almost any given experimental setup can be modeled. The values of C_T and R_T can also be optimized for, if so desired.

To implement the excitation we employ the same approach used by Oswald et al. (2003). We couple a resistive voltage source to the distributed transmission line. The resistive voltage source consists of a series of an ideal ohmic resistor R_S and an ideal voltage source v_S^n . To avoid reflections between the voltage source and the cable connecting the TDR instrument to the probe we adjust R_S to the impedance of the connecting cable. The current flow out of the resistive voltage source is i_S^n . The time derivative of the source voltage is implemented with a discretized version of the given expression for the time domain signal shape.

HESSD 2, 1449-1502, 2005 Efficient and dispersive TDR P. Leidenberger et al. Title Page Introduction Abstract Conclusions References Tables **Figures** Back Close Full Screen / Esc Print Version Interactive Discussion EGU

2.1.2. Transmission line parameters for three-rod TDR Probe

To solve the forward TDR problem the transmission line parameters for the three-rod probe, C', G', L' and R', are essential. Closed-form, analytical expressions for the two-rod probe and the coaxial line are well known (Ramo et al., 1984). This is however not the case for the three-rod probe. We will derive an analytical model for the three-rod TDR probe based on an approximation of the electric and magnetic fields. This approximation, in principle, also applies for the two-rod probe and therefore can be used to assess its quality by comparing it to the exact solution. The comparison is then extrapolated to serve as an indication for the method's reliability to model three-rod probes.

We calculate the electric parameters, C' and G', from the electric potential Φ_{el} and the inductance L' from the magnetic induction B of the three-rod probe. For long rods and a large conductor distance d in comparison to the conductor diameter D, i.e. $\frac{D}{d} \ll 1$, we approximate the electric potential and the magnetic induction. We postulate that the total electrostatic potential of a three-rod probe equals the superposition of the single conductor potentials; the same assumption applies for the magnetic induction. Thus, the neighboring conductors are neglected for the derivation of the potential of a specific conductor. The details of the derivation are given in in Appendix 6. The electrostatic potential, magnetic field, and the geometrical basis of the three-rod probe for calculating these parameters are shown in Fig. 1. The transmission line parameters per unit length for the three rod probe with $\kappa = \frac{d}{D}$ are then obtained as

$$C' = \frac{4\pi\epsilon}{\ln\left(\frac{4\kappa^2 - 1}{4\kappa - 1}\right) + 2\ln\left(2\kappa - 1\right)}$$
(16)
$$G' = \frac{4\pi\sigma}{\ln\left(\frac{4\kappa^2 - 1}{4\kappa + 1}\right) + 2\ln\left(2\kappa - 1\right)}$$
(17)

HESSD

2, 1449-1502, 2005

Efficient and dispersive TDR

$$L' = \frac{3\mu_0}{4\pi} \left[\frac{1}{2} + \ln(2\kappa - 1) + \frac{1}{3}\ln\left(\frac{2\kappa + 1}{4\kappa - 1}\right) \right].$$
 (18)

For assessing the quality of the approximate solutions we calculate the electrical parameters for the two-rod probe in the same way:

$$C'_{2,approx.} = \frac{\pi \epsilon \ln (2\kappa)}{\ln (2\kappa - 1)}$$
(19)

$$G'_{2,approx.} = \frac{\pi o}{\ln(2\kappa - 1)}$$
 (20)

5

10

$$L'_{2,approx.} = \frac{\mu_0}{\pi} \left[\frac{1}{2} + \ln(2\kappa - 1) \right].$$
(21)

We now calculate the relative error of these approximations using the exact values for the two-rod probe (Ramo et al., 1984):

$$\frac{C'_{2,approx.} - C'_{2,exact}}{C'_{2,exact}} = \frac{\cosh^{-1}(\kappa)}{\ln(2\kappa - 1)} - 1$$

$$\frac{G'_{2,approx.} - G'_{2,exact}}{G'_{2,exact}} = \frac{\cosh^{-1}(\kappa)}{\ln(2\kappa - 1)} - 1$$
(22)
(23)

$$\frac{L'_{2,approx.} - L'_{2,exact}}{L'_{2,exact}} = \frac{\frac{1}{2} + \ln(2\kappa - 1)}{\cosh^{-1}(\kappa)} - 1.$$
(24)

The relative error for these three equations is plotted in Fig. 2. The error of the approximation for the capacitance and the conductance is for a wide range much smaller than 4%. For the inductance the error is largely in the range of 10–15%. Transmission ¹⁵ line parameters are inherently integral quantities. They result from the integral evaluation of electric (C', G') and magnetic (L') fields, for details Appendix 6. Because the approximation for the two-rod probe is very accurate over a large parameter range, we extrapolate the error of the approximation for the three-rod probe to be of the same

size. The quality of the approximation improves with increasing κ , which more and more correspondents to the situation of an infinitely thin line charge and current filament, respectively.

- 2.2. Time domain dispersive dielectric modeling
- ⁵ Experience gained from TDR traces measured in the field has shown that it is mandatory to consider dispersive dielectric soil properties. We start with a Debye model using one single relaxation frequency (Debye, 1929; Nyfors and Vainikainen, 1989; Taflove, 1998). The Debye model describes the orientation polarization of polar molecules. Let us think of an electric field, switched on instantaneously. The polar molecules turn
 ¹⁰ slowly and the polarization evolves exponentially, with a time constant *τ*, to its final state. The relative dielectric permittivity *ε_r* as a function of frequency is then:

$$\epsilon_r(\omega) = \epsilon'_{\infty} + \frac{\epsilon'_s - \epsilon'_{\infty}}{1 + j\omega\tau}.$$

Here ε'_{∞} is the permittivity at infinite frequency, where the orientation polarization of the molecules has no time to develop. The static permittivity ε'_{s} corresponds to a state ¹⁵ where the orientation polarization has had sufficient time to develop fully. For solving the transmission line equations in the time domain, we transform Eq. (25) into the time domain.

$$\epsilon_{r}(t) = \epsilon_{\infty}' \delta(t) + \frac{\Delta \epsilon'}{\tau} e^{-\frac{t}{\tau}} U(t)$$
(26)

with $\Delta \epsilon'_r = \epsilon'_s - \epsilon'_\infty$. We end up with a time-dependent capacitance per unit length ²⁰ *C*'(*t*), which is split into a time-dependent and a time-independent part:

$$C'(t) = C'_0 \epsilon_r(t) \tag{27}$$

HESSD

2, 1449-1502, 2005

Efficient and dispersive TDR

P. Leidenberger et al.

(25)

Equation (27) with Eqs. (2) and (1) are discretized, using central finite differences both in space and in time. We obtain the update procedure for the voltage and current:

$$v_{k}^{n+1} = -\frac{2\Delta t G_{k}'}{C_{0k}' \varepsilon_{\infty k}'} v_{k}^{n} - \frac{2\Delta t \Delta \varepsilon_{k}'}{\varepsilon_{\infty k}' \tau_{k}} v_{k}^{n} + v_{k}^{n-1} - \frac{\Delta t}{C_{0k}' \varepsilon_{\infty k}' \Delta x} \left(i_{k+1}^{n} - i_{k-1}^{n} \right) + \frac{2\Delta \varepsilon_{k}' \Delta t}{\tau_{k}^{2} \varepsilon_{\infty k}'} \psi_{k}^{n}$$

$$(28)$$

5

15

$$i_{k}^{n+1} = -\frac{2R'_{k}\Delta t}{L'_{k}}i_{k}^{n} + i_{k}^{n-1} - \frac{\Delta t}{\Delta x L'_{k}}\left(v_{k+1}^{n} - v_{k-1}^{n}\right)$$

with the abbreviation

$$\psi_{k}^{n} = e^{-\frac{\Delta t}{\tau_{k}}} \psi_{k}^{n-1} + \frac{\Delta t}{2} \left(v_{k}^{n} + e^{-\frac{\Delta t}{\tau_{k}}} v_{k}^{n-1} \right) .$$
(30)

The detailed calculation for this discretization can be found in Appendix 7.

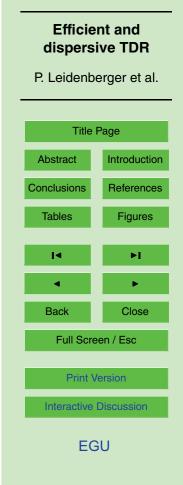
10 2.3. Hierarchical Optimization

Our profile reconstruction approach is based on Oswald et al. (2003). The non-linear inverse problem is solved iteratively with a transmission line solver to calculate TDR traces, based on a given profile of electric parameters. The forward solver is embedded into a global optimizer based on a genetic algorithm (Levine, 1996; Rahmat-Samii and Michielssen, 1999) which delivers electric parameter profiles, adapted according to their fitness. Fitness is a quantity which is roughly inversely proportional to the trace mismatch :

$$m = \sum_{n=N_{start}}^{N_{stop}} |v_{meas}(n\Delta t) - v_{calc}(n\Delta t)|,$$

HESSD

2, 1449-1502, 2005



(29)

(31)

We use the sum of absolute values of the difference between calculated and measured TDR traces in contrast to the sum of squared differences used by Oswald et al. (2003).

The genetic algorithm operates on bit-strings which are mapped to real numbers to produces the electric parameter profiles. Hence the electric parameters are inher-

⁵ ently discretized. Using a sufficient number of bits per parameter we provide a finegrained set of values. The efficiency of profile reconstruction depends on the genetic algorithm's parameters: mutation rate, crossover probability and population size. The corresponding values are listed in Tables 3 and 4.

While Oswald et al. (2003) achieve to solve the problem, there are still issues, namely
 (i) it is computationally intensive due to a large number of forward problem runs (ii) the resulting electric parameter profiles may exhibit oscillatory behavior even if their average corresponds to the converged state.

To alleviate the computational burden and to achieve smoother parameter profiles we have implemented a hierarchical optimization scheme, Fig. 3. The scheme starts ¹⁵ out with a coarse spatial resolution which is increased as convergence decreases. For assessing the degree of convergence we calculate the envelope of the fitness and approximate its slope with with a line, Fig. 4. An envelope point (squares at green line) is retrieved as the maximum fitness value of *N* consecutive individuals, in our case N=30. A complete envelope consists of *M* such points. As soon as the next *N* ²⁰ individuals have been calculated, the oldest envelope point is discarded and the whole

- envelope section is moved one point ahead with respect to the sequence of evaluated individuals. If the majority of envelope points is below the line (red line), with the slope defined in the job file, the spatial resolution is increased by cutting the intervals of dielectric properties into halves. The new intervals are initialized with the same
- ²⁵ dielectric properties, as the old intervals had at the same location. The optimization stops if a previously specified spatial resolution is reached and the fitness does not increase.

HESSD

2, 1449-1502, 2005

Efficient and dispersive TDR

3. Results

3.1. Validation of parallel RC boundary condition

We show the results of TDR traces calculated for different probe termination conditions with a non-dispersive dielectric permittivity between the probe conductors, for all parameters cf. Table 2. Figure 5 shows the open termination. The first reflection results form the cable-probe-transition, the second from the end of the probe. After these, there are multiple reflections. The TDR probe in Fig. 6 is terminated with the probe impedance. There are no reflections from the end of the probe visible, as expected. Figure 7 demonstrates the effect of ohmic conductivity between the probe conductors with an open at the end of the probe. Figure 8 shows the result of a probe with parallel resistive capacitive termination and ohmic conductivity between the probe conductors. At the second reflection we can see the effect of the resistive capacitive termination: (i) at first it behaves like a short circuit; (ii) if the capacitor is charged, it behaves like a pure resistive termination; (iii) and the edges of the reflections are smoothed.

15 3.2. Validation of dispersive dielectric TDR model

Figures 9–11 show the results for TDR traces calculated with dispersive media and open probe termination. At Fig. 9 the effect of dispersive media with low relaxation frequency can be seen: the reflection coefficient decreases slowly after a reflection. We note that there is negligible ohmic conductivity between the probe rods. Figure 10 shows the second effect of dispersion: the reflections are not sharp any more, they appear smoothed. In Fig. 11 the impact of a smaller $\Delta \epsilon$ with respect to the values used for Fig. 10, is shown.

HESSD

2, 1449–1502, 2005

Efficient and dispersive TDR

3.3.1. Traces measured in non-dispersive media

In Figs. 13–15 we show hierarchical reconstructions of the dielectric parameters for the same traces used by Oswald et al. (2003). The probe was in a sand tank with ⁵ water content $\theta_1 = \theta_3 = 0$, θ_2 was varied. The experimental setup is sketched in Fig. 12. Relevant optimization parameters are given in Table 3. The vertical dashed lines in fitness and error history indicate an increase in spatial resolution. The number of spatial intervals are given in red in history and fitness.

For Fig. 13 with water content $\theta_2 = 0$ we see no significant increase in fitness, ¹⁰ when increasing the spatial resolution during the optimization. For traces with inhomogeneous water content, Fig. 14: θ_2 =0.05, Fig. 15: θ_2 =0.10, we see an increase in fitness, if the spatial resolution is commensurate with the region where the water content varies. The hierarchical reconstruction requires about an order of magnitude less iterations for the same traces as the reconstruction with full spatial resolution right from ¹⁵ the optimization's start. Additionally, the hierarchical approach leads to considerably smoother profiles when compared to Oswald et al. (2003).

3.3.2. Traces measured under field conditions

In Figs. 16–19 we show hierarchical reconstructions of TDR traces measured under field condition at the Grenzhof (Heidelberg, Germany) test site (Wollschläger and Roth, 2005). The traces were recorded with a "Campbell TDR 100" using a Campbell probe "CS610". Essential TDR properties and the parameters used in the optimization to produce Figs. 16–19 are shown in Table 4. The steps in all these measured traces result of finite time resolution in recording. The first reflection in all traces is a result of the TDR probe head. The head is simulated with a transmission line section. Generally, we can fit the transmission line parameters for this part with our simulation. Because the parameters are constant for every single probe, we fit them manually and fix the

HESSD 2, 1449-1502, 2005 Efficient and dispersive TDR P. Leidenberger et al. **Title Page** Abstract Introduction Conclusions References Tables **Figures** Back Close Full Screen / Esc **Print Version** Interactive Discussion EGU

respective parameters in the job file, because it would unnecessarily slow down the optimization if it was fitted for every trace from scratch once again. We particularly note Fig. 16. More conventional techniques (e.g. Roth et al., 1990) experience severe problems, may even fail, to evaluate this trace, because there is no sharp reflection from the end of probe.

4. Discussion

5

We have derived analytical expressions for the transmission line parameters of a three rod probe, based on an approximate model; such expressions, to our knowledge, have not been presented in the area of the TDR literature yet.

¹⁰ We have validated the numerical model by calculating synthetic traces, using both dispersive and non-dispersive dielectric properties. We mention that dispersive dielectrics place additional restrictions onto the time-step of the explicit integration scheme to keep it stable.

We have used a hierarchical approach to reconstruct electric parameter profiles from

¹⁵ TDR traces measured in the laboratory with minimal electrical losses. The hierarchical approach reduced the number of forward solutions required and leads to considerably smoother profiles.

We consider hierarchical optimization to be a definite advance and speculate that this will hopefully support the deployment of TDR profile reconstruction in field applications.

- Numerical experimentation for reconstructing TDR traces measured in the field has definitely shown that dispersive dielectric properties must be included in the numerical model. Only when using dispersive dielectrics can such TDR traces be recovered numerically; using frequency-independent permittivity alone can not account for the the shape of the traces.
- ²⁵ If the frequency range of the TDR instrument is well below the relaxation frequency, dispersion becomes less important. On the other hand, if the TDR's frequency content and the relaxation frequency have a significant overlap, then dispersion will be quite

2, 1449-1502, 2005

Efficient and dispersive TDR

pronounced. The "Campbell TDR 100" has $f_{3dB} \approx 740$ MHz. The relaxation frequencies extracted by the optimization are within this range and therefore dispersion is relevant (Robinson et al., 2003, 2005).

We note that in all cases we used a relatively small mutation probability, 0.01, and
a significantly higher cross-over probability, 0.6. Increasing the mutation probability results in a more diverse population but does not seem to accelerate the convergence behavior. On the other hand, using a relatively high cross-over probability ensures efficient reconstruction. The error and fitness histories represent the search in a wide parameter range. For some individuals we obtain a high error and respectively a low
fitness. The low fitness of some individuals give the black filled area in fitness history.

Note that the error and fitness history are line plots. The high errors are cut of in the plots so that the relevant sector is visible. Additionally, the error's running average is plotted in the diagrams with a blue line.

Furthermore, a more realistic numerical boundary condition using a parallel resistivecapacitive impedance is essential. Using all these model components we succeed in reconstructing field measured TDR traces over a wide spectrum of dielectric permittivity and conductivity. We note that dielectric loss caused by the dispersive Debye model is fundamentally different from electric loss. We finally mention that our profile reconstruction does not require any a priori information whatsoever in order to succeed.

20 5. Conclusions

A robust, accurate and efficient method has been presented for reconstructing dielectric and ohmic conductivity profiles along TDR traces, for both laboratory and field traces. Different boundary conditions have been implemented for modeling a wide variety of probe terminations encountered in experimental setups. Dispersive dielectric properties are reconstructed and may be of interest for extracting even more informa-

²⁵ properties are reconstructed and may be of interest for extracting even more information from TDR traces, such as a distinction between bound and free water, so characteristical for clay and loam soils (Ishida et al., 2000).

Now, that TDR technology using conventional, transverse-electric-magnetic (TEM) probes has reached considerable maturity we speculate that it could be worthwhile to address more advanced concepts, such as the single-rod probe using a transverse-magnetic mode of propagation, (Oswald et al., 2004; Nussberger et al., 2005). Such probe types may pose modeling challenges but they also hold the promise of avoiding problems of probes with multiple conducting rods.

The code developed in this work will be available in due course.

5

15

6. Appendix: Three-rod probe transmission line parameters

The electric potential of a line charge, with diameter D, in z-direction, cf. Fig. 1, outside the conductor is given by

$$\Phi_{el}(x,y) = \Phi_0 - \frac{Q}{l} \frac{1}{2\pi\epsilon} \ln\left(\sqrt{x^2 + y^2}\right)$$
(32)

with potential Φ_0 at infinity and line charge density $\frac{Q}{I}$. By convention, the potential at infinity is set to zero. We consider three parallel, infinitely long line charges, Fig. 1. The total potential, outside the conductors, is the superposition of of the single rod potential, Eq. (32):

$$\Phi_{el} = \frac{Q}{l} \frac{1}{2\pi\epsilon} \left\{ \frac{1}{2} \ln\left[\left((x-d)^2 + y^2 \right) \left((x+d)^2 + y^2 \right) \right] - \ln\left[x^2 + y^2 \right] \right\}.$$
 (33)

The capacitance per unit length between conductor 0 and 1 is

$$C_{01}' = \frac{\frac{Q}{I}}{V}$$
(34)

with the potential difference V between the two nearest points of conductor 0 and 1:(x=D, y=0) and $(x=d-\frac{D}{2}, y=0)$.

$$V = \Phi_{el} \left(x = \frac{D}{2}, y = 0 \right) - \Phi_{el} \left(x = d - \frac{D}{2}, y = 0 \right)$$

1465

HESSD

2, 1449–1502, 2005

Efficient and dispersive TDR

$$= \frac{Q}{I} \frac{1}{2\pi\epsilon} \left[\ln \left(\frac{4d^2 - D^2}{4dD - D^2} \right) + \ln \left(\frac{2d - D}{D} \right) \right].$$

Due to the symmetry of the conductor arrangement the capacitance of a three-rod probe is twice the capacitance, resulting from Eq. (35). Therefore, the capacitance per unit length is

$$C' = \frac{4\pi\epsilon}{\ln\left(\frac{4d^2-D^2}{4dD-D^2}\right) + 2\ln\left(\frac{2d-D}{D}\right)}.$$

5

The conductance per unit length G' of the medium between the rods is calculated from the electric potential. We use Ohm's law

$$\boldsymbol{j} = \sigma \boldsymbol{E}$$

with current density j, ohmic conductivity σ and the electric field $E = -\nabla \Phi_{el}$. The current between conductor 0 and 1 per length *l* is the integral of $j \cdot F_1$ with $F_1 \perp x$ -axis:

$$I = \int_{0}^{1} \int_{-\infty}^{+\infty} j_x \, dy \, dz$$
$$= \sigma I \int_{-\infty}^{+\infty} E_x \, dy.$$

Using the electric potential, Eq. (33), and evaluating the integral we obtain

$$I = \frac{\sigma}{\epsilon}Q.$$
 (39)

¹⁵ With the potential difference, Eq. (35), we compute the conductivity per unit length between conductor 0 and 1:

$$G_{01}' = \frac{I'}{U}.$$
 (40)

(35)

(36)

(37)

(38)

Again, due to the symmetry of the conductor arrangement, Fig. 1, the conductivity per unit length of the three-rod TDR probe is twice G'_{01} :

$$G' = \frac{4\pi\sigma}{\ln\left(\frac{4d^2 - D^2}{4dD + D^2}\right) + 2\ln\left(\frac{2d - D}{D}\right)}.$$
(41)

The magnetic field of a wire infinitely extended in *z*-direction with radius $\frac{D}{2}$, conduct-⁵ ing current I, using the definition $r = \sqrt{x^2 + y^2}$ is

$$r \le \frac{D}{2}: \qquad B(r) = \frac{2\mu_0 l}{\pi D^2} r$$

$$r > \frac{D}{2}: \qquad B(r) = \frac{\mu_0 l}{2\pi r}.$$
(42)
(43)

The magnetic induction outside a wire for the three-rod probe is given as a superposition of Eq. (43)

$$B(x,y) = \frac{\mu_0 l}{2\pi} \left(\frac{2}{\sqrt{x^2 + y^2}} - \frac{1}{\sqrt{(x-d)^2 + y^2}} - \frac{1}{\sqrt{(x+d)^2 + y^2}} \right)$$
(44)

10

15

where we have implicitly assumed that we only need the field in a plane parallel to the line connecting the centers of the three conductors, hereby ensuring that the directions of the three magnetic induction components are all parallel. With Eqs. (44) and (42) the magnetic flux Φ_m through the area $F_2 \perp y$ -axes with $F_2 = d \cdot I$ at y = 0 is

$$\Phi_{m} = I \left[\int_{0}^{\frac{D}{2}} B_{x}(x) \, dx + \int_{\frac{D}{2}}^{\frac{d-D}{2}} B_{x}(x) \, dx + \int_{d-\frac{D}{2}}^{d} B_{x}(x) \, dx \right]$$
$$= \frac{\mu_{0} I I}{2\pi} \left[\frac{3}{2} + 3 \ln \left(\frac{2d-D}{D} \right) + \ln \left(\frac{2d+D}{4d-D} \right) \right]. \tag{45}$$

HESSD

2, 1449–1502, 2005

Efficient and dispersive TDR

The self inductance per unit length between conductor 0 and 1 is

 $L' = \frac{\frac{\Phi_m}{I}}{I}.$

10

Due to the symmetry of the arrangement the inductance of the three rod probe is one half the inductance that follows from the magnetic flux Eq. (46). So the inductance per unit length is

$$L' = \frac{3\mu_0}{4\pi} \left[\frac{1}{2} + \ln\left(\frac{2d-D}{D}\right) + \frac{1}{3}\ln\left(\frac{2d+D}{4d-D}\right) \right].$$
 (47)

7. Appendix: Discretization of dispersive dielectric medium

To obtain the update procedure for the voltage we insert Eq. (27) into Eq. (2):

$$\begin{aligned} \frac{\partial i}{\partial x} &= -\left(G' + C'(t) \otimes \frac{\partial}{\partial t}\right) v \\ &= -G'v - C'_0 \left[\left(\varepsilon'_{\infty} \delta(t) + \frac{\Delta \varepsilon'}{\tau} e^{-\frac{t}{\tau}} U(t) \right) \otimes \frac{\partial v}{\partial t} \right] \\ &= -G'v - C'_0 \varepsilon'_{\infty} \int_{-\infty}^{+\infty} \frac{\partial v(t')}{\partial t'} \delta(t - t') dt' \\ &- C'_0 \frac{\Delta \varepsilon'}{\tau} \int_{-\infty}^{+\infty} e^{-\frac{t-t'}{\tau}} U(t - t') \frac{\partial v(t')}{\partial t'} dt'. \end{aligned}$$

The second term of Eq. (48) is

$$C_{0}^{\prime}\epsilon_{\infty}^{\prime}\int_{-\infty}^{+\infty}\frac{\partial v\left(t^{\prime}\right)}{\partial t^{\prime}}\delta\left(t-t^{\prime}\right)dt^{\prime}=C_{0}^{\prime}\epsilon_{\infty}^{\prime}\frac{\partial v\left(t\right)}{\partial t}.$$

HESSD

2, 1449–1502, 2005

(46)

(48)

(49)

Efficient and dispersive TDR

The integral of the third term leads, using partial integration, to

$$\int_{-\infty}^{+\infty} e^{-\frac{t-t'}{\tau}} U(t-t') \frac{\partial v(t')}{\partial t'} dt' = \int_{-\infty}^{t} e^{-\frac{t-t'}{\tau}} \frac{\partial v(t')}{\partial t'} dt'$$
$$= \left[e^{-\frac{t-t'}{\tau}} v(t') \right]_{t'=-\infty}^{t'=t} - \int_{-\infty}^{t} \frac{1}{\tau} e^{-\frac{t-t'}{\tau}} v(t') dt'$$
$$= v(t) - \frac{1}{\tau} \int_{-\infty}^{t} e^{-\frac{t-t'}{\tau}} v(t') dt'.$$

5 We agree on the following abbreviation:

$$\psi(t) := \int_{-\infty}^{t} e^{-\frac{t-t'}{\tau}} v(t') dt'.$$
(51)

We finally obtain the transmission line Eq. (2) for a Debye medium

$$\frac{\partial i(t)}{\partial x} = -G'v(t) - C'_0 \varepsilon'_\infty \frac{\partial v(t)}{\partial t} - C'_0 \frac{\Delta \varepsilon'}{\tau} v(t) + C'_0 \frac{\Delta \varepsilon'}{\tau^2} \psi(t) .$$
(52)

The discretized version of ψ is

10
$$\psi_{k}^{n} = \psi(t)|_{x_{k},t_{n}}$$

$$= \int_{-\infty}^{n\Delta t} e^{-\frac{n\Delta t}{\tau_{k}}} v_{k}(t') dt'$$

$$= \int_{-\infty}^{n\Delta t} e^{-\frac{n\Delta t}{\tau_{k}}} e^{\frac{t'}{\tau_{k}}} v_{k}(t') dt'$$
(55)

1469

HESSD

2, 1449–1502, 2005

Efficient and dispersive TDR

P. Leidenberger et al.

(50)

$$= e^{-\frac{n\Delta t}{\tau_{k}}} \left(\int_{-\infty}^{(n-1)\Delta t} e^{\frac{t'}{\tau_{k}}} v_{k}(t') dt' + \int_{(n-1)\Delta t}^{n\Delta t} e^{\frac{t'}{\tau_{k}}} v_{k}(t') dt' \right)$$
(56)
$$= e^{-\frac{\Delta t}{\tau_{k}}} e^{-\frac{(n-1)\Delta t}{\tau_{k}}} \left(\int_{-\infty}^{(n-1)\Delta t} e^{\frac{t'}{\tau_{k}}} v_{k}(t') dt' + \int_{(n-1)\Delta t}^{n\Delta t} e^{\frac{t'}{\tau_{k}}} v_{k}(t') dt' \right).$$
(57)

With these expansions we write the first integral as a function of ψ_k^{n-1} and the second integral is evaluated using the trapezoidal rule.

$$\int_{5} \Psi_{k}^{n} = e^{-\frac{\Delta t}{\tau_{k}}} \Psi_{k}^{n-1} + \frac{1}{2} e^{-\frac{\Delta t}{\tau_{k}}} e^{-\frac{(n-1)\Delta t}{\tau_{k}}} \Delta t \left(e^{\frac{n\Delta t}{\tau_{k}}} v_{k}^{n} + e^{\frac{(n-1)\Delta t}{\tau_{k}}} v_{k}^{n-1} \right)$$
(58)

$$=e^{-\frac{\Delta t}{\tau_k}}\psi_k^{n-1} + \frac{\Delta t}{2}\left(v_k^n + e^{-\frac{\Delta t}{\tau_k}}v_k^{n-1}\right)$$
(59)

With this rearrangement we can calculate ψ_k^n from ψ_k^{n-1} . There is no need to save the total history of v(t) which results into a considerable memory savings. The derivatives in Eqs. (52) and (1) are discretized, accurate to 2nd order (Taflove, 1998) using central finite differences both in space and in time. We obtain

$$\frac{i_{k+1}^{n} - i_{k-1}^{n}}{2\Delta x} = -G_{k}^{\prime} v_{k}^{n} - C_{0k}^{\prime} \varepsilon_{\infty k}^{\prime} \frac{v_{k}^{n+1} - v_{k}^{n-1}}{2\Delta t} - C_{0k}^{\prime} \frac{\Delta \varepsilon_{k}^{\prime}}{\tau_{k}} v_{k}^{n} + C_{0k}^{\prime} \frac{\Delta \varepsilon_{k}^{\prime}}{\tau_{k}^{2}} \psi_{k}^{n}$$
(60)

$$\frac{v_{n+1}^n - v_{k-1}^n}{2\Delta x} = -R'_k i_k^n - L'_k \frac{i_k^{n+1} - i_k^{n-1}}{2\Delta t}.$$
(61)

By rearranging terms this leads to the update procedure for voltage and current

$$V_{k}^{n+1} = -\frac{2\Delta t G_{k}'}{G_{0k}' \varepsilon_{\infty k}'} V_{k}^{n} - \frac{2\Delta t \Delta \varepsilon_{k}'}{\varepsilon_{\infty k}' \tau_{k}} V_{k}^{n} + V_{k}^{n-1}$$
1470

10

HESSD

2, 1449–1502, 2005

Efficient and dispersive TDR

$$-\frac{\Delta t}{C'_{0k}\epsilon'_{\infty k}\Delta x}\left(i^n_{k+1}-i^n_{k-1}\right)+\frac{2\Delta\epsilon'_k\Delta t}{\tau^2_k\epsilon'_{\infty k}}\psi^n_k$$

$$i_{k}^{n+1} = -\frac{2R'_{k}\Delta t}{L'_{k}}i_{k}^{n} + i_{k}^{n-1} - \frac{\Delta t}{\Delta x L'_{k}}\left(v_{k+1}^{n} - v_{k-1}^{n}\right).$$

8. List of symbols

5

В	magnetic field, $\frac{Vs}{m^2} = T$.
c_0	speed of light in vacuum, $\frac{m}{s}$.
С	capacitance, F.
C_T	value of the capacitor terminating the TDR probe, F.
C'	capacitance per unit length of a transmission line, $\frac{F}{m}$.
Δx	spatial resolution in the discretization of the transmission
	line equations, m.
$\Delta \epsilon' = (\epsilon'_s - \epsilon'_\infty)$	difference between static permittivity and permittivity at infi-
	nite frequency, dimensionless.
Δt	discretization width in the time domain, s.
D	diameter of the conductors of a two- or three-wire transmis-
	sion line, m.
d	distance between the centers of two nearest conductors of
	a transmission line, m.
$\epsilon = \epsilon_0 \epsilon_r$	absolute complex dielectric permittivity, As
$\epsilon(t) = \epsilon_0 \epsilon_r(t)$	absolute dielectric permittivity as function of time, $\frac{As}{Vm}$.
ϵ_{0}	absolute dielectric permittivity of vacuum, $\frac{1}{Uc^2}$.
-	- μυ-

HESSD 2, 1449–1502, 2005 Efficient and dispersive TDR P. Leidenberger et al. Title Page Abstract Introduction Conclusions References Tables Figures ∎∎ ١٩ ► ◄ Back Close Full Screen / Esc Print Version Interactive Discussion

(62)

(63)

EGU

$arepsilon'_\infty$	real valued relative permittivity at infinite frequency in De-
	bye model, dimensionless.
<i>e</i> _r	complex valued relative dielectric permittivity, dimension-
	less.
$\epsilon_{r,\max}$	maximum value of relative dielectric permittivity, dimension-
.,	less.
$\epsilon_r(\omega)$	complex valued relative dielectric permittivity as a function
	of angular frequency of electric field, dimensionless.
$\epsilon_r(t)$	relative dielectric permittivity as a function of time, Fourier
	transformed of $\varepsilon_r(\omega)$, dimensionless.
ϵ_s'	real valued relative permittivity at zero frequency in Debye
U _S	model, dimensionless.
E	electric field, $\frac{V}{m}$.
_	frequency at which amplitude of the respective function has
f _{3dB}	
£	reduced by 3dB, Hz.
f _{max}	maximum frequency, Hz.
f _{rel}	relaxation frequency in Debye model, Hz.
G	conductance, S.
G'	conductance per unit length of a transmission line, $\frac{S}{m}$.
1	current, A.
I_T	current at the end of the transmission line, A.
i (x , t)	current on a transmission line as function of position x and
	time t, A.
$i_k^n \equiv (x_k, t_n)$	current at point $k\Delta x$ at time $n\Delta t$, A.
i _s	TDR source current, A.
i _S j	imaginary unit, $j = \sqrt{-1}$.
i	current density, $\frac{A}{m^2}$.
j _x , j _y , j _z	components of current density referring to a Cartesian co-
JX, JY, JZ	ordination system, $\frac{A}{m^2}$.
	1472

HESSD 2, 1449–1502, 2005 Efficient and dispersive TDR P. Leidenberger et al. Title Page Abstract Introduction References Conclusions Tables Figures ∎∎ Þ١ ► ◄ Back Close Full Screen / Esc Print Version Interactive Discussion EGU

$\delta(t)$	Dirac delta function.	HESSD
$\kappa = \frac{d}{D}$	factor of probe geometry, dimensionless.	0 1110 1500 0005
k -	index used for the specification of spatial locations, k \cdot	2, 1449–1502, 2005
	$\Delta x = x_k$, dimensionless.	
K	index, denoting the last index in spatial discretization, $K \cdot$	Efficient and
	$\Delta x = \Lambda$, dimensionless.	dispersive TDR
Λ	total length of TDR-probe, m.	-
λ_{min}	minimum wavelength, m.	P. Leidenberger et al.
λ _{min} L'	inductance per unit length of a transmission line, $\frac{H}{m}$.	
1	length of a part of TDR probe, m.	
$\mu = \mu_0 \mu_r$	magnetic permeability of a material, $\frac{Vs}{Am}$.	Title Page
μ_0	magnetic permeability of vacuum, $4\pi 10^{-7}$, $\frac{Vs}{Am}$.	Abstract Introduction
$\mu_r = (\mu_r' - j\mu_r'')$		
$\mu_{r} = (\mu_{r} J\mu_{r})$	considered soil materials, dimensionless.	Conclusions References
μ_r'	real part of the complex valued relative magnetic perme-	Tables Figures
μ γ	ability, dimensionless.	Tables Figures
μ_r''	imaginary part of the complex valued relative magnetic per-	I II
	meability, dimensionless.	
Μ	number of fitness envelope points.	 ▲ ▶
т	mismatch between measured and calculated TDR trace, di- mensionless.	Back Close
Ν	number of consecutive individuals, used for a fitness enve- lope point.	Full Screen / Esc
N _{start}	index denoting start time for mismatch calculating, dimen-	Print Version
• start	sionless.	Finit Version
N _{stop}	index denoting stop time for mismatch calculating, dimen-	Interactive Discussion
0100	sionless.	
п	index used for the specification of time, $x(n \cdot \Delta t) = x^n$, di-	EGU
	mensionless.	

۵ ۲	angular frequency of electric field, $\frac{1}{s}$.	HES	SSD
$\Phi_{el} \ \psi_k^n$	electro static potential, V. = $e^{-\frac{\Delta t}{\tau_k}}\psi_k^{n-1} + \frac{\Delta t}{2}\left(v_k^n + e^{-\frac{\Delta t}{\tau_k}}v_k^{n-1}\right)$, abbreviation for calcula-	2, 1449–1	502, 2005
Q P R' R _S R _{skin}	tions in a dispersive dielectric medium. electric charge, As. reflection coefficient, dimensionless. resistance per unit length of a transmission line, $\frac{\Omega}{m}$. source impedance of resistive voltage source, Ω . skin resistance of a conductor, Ω .	Efficie dispersi P. Leidenbe	ive TDR
$R_T = \sigma(x)$	value of the resistor terminating the TDR probe, Ω . ohmic conductivity as a function of longitudinal position on	Title	-
$\tau = \frac{1}{2\pi f_{rel}}$	the TDR probe, $\frac{s}{m}$. relaxation time of a dipole in the Debye model, s.	Abstract Conclusions	Introduction References
$ \theta $ $ \theta(x) $	volumetric water content, $\frac{m^3}{m^3}$. volumetric water content as function of longitudinal position	Tables	Figures
t	on the TDR probe, $\frac{m^3}{m^3}$. time, s.	14	>1
t _{rise} t _{sec}	rise time of an electrical signal, usually the time required for the signal to rise from 10 to 90% of its final value, s. time step security for explicit time domain integration, s.	Back	Close
V_T V(x,t)	voltage at the end of the transmission line, V. voltage on a transmission line as function of position x and time $t = 1$	Full Scre	_
$v_k^n \equiv v(x_k, t_n)$ v_S	time t, V. voltage at point $k\Delta x$ at time $n\Delta t$, V. TDR source voltage, V.	Print V	
U(t) x, y, z	Heaviside step function. spatial coordinate, m.	EG	U

Acknowledgements. Financial support of this work was provided in part by Deutsche Forschungsgemeinschaft (Project No. 1080-8/2).

References

5

10

Birchak, J. R., Gardner, C. G., Hipp, J. E., and Victor, J. M.: High Dielectric Constant Microwave Probes for Sensing Soil Moisture, Proceedings of the IEEE, 62, 93–98, 1974. 1450
Dasberg, S. and Dalton, F. N.: Time Domain Reflectometry Field Measurements of Soil Water Content and Electrical Conductivity, Soil Sci. Soc. Am. J., 49, 293–297, 1985. 1450
Dasberg, S. and Hopmans, J. W.: Time Domain Reflectometry Calibration for Uniformly and

Nonuniformly Wetted Sand and Clayed Loam Soils, Soil Sci. Am. J., 56, 1341–1345, 1992. 1450

Debye, P.: Polare Molekeln, Verlag von S. Hirzel, Leipzig, 1929. 1451, 1458

- Feng, W., Lin, C. P., Deschamps, R. J., and Drnevich, V. P.: Theoretical model of a multisection time domain reflectometry measurement system, Water Resources Research, 35, 2321– 2331, 1999. 1450
- Heimovaara, T. J.: Frequency domain analysis of time domain reflectometry waveforms, 1. Measurement of the complex dielectric permittivity of soils, Wat. Resour. Res., 2, 189–200, 1994. 1451

Heimovaara, T. J., de Winter, E. J. G., van Loon, W. K. P., and Esveld, D. C.: Frequencydependent dielectric permittivity from 0 to 1 GHz: Time domain reflectometry measurements

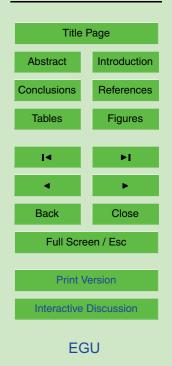
- 20 compared with frequency domain network analyzer measurements, Wat. Resour. Res., 32, 3603–3610, 1996. 1451
 - Heimovaara, T. J., Huisman, J. A., Vrugt, J. A., and Bouten, W.: Obtaining the Spatial Distribution of Water Content along a TDR probe Using the SCEM-UA Bayesian Inverse Modeling Scheme, Vadose Zone Journal, 3, 1128–1145, 2004. 1450
- Hilhorst, M. A., Dirksen, C., Kampers, F. W. H., and Feddes, R. A.: Dielectric Relaxation of Bound Water versus Soil Matric Pressure, Soil Science Society of America Journal, 65, 311–314, 2001. 1451

Hoekstra, P. and Delaney, A.: Dielectric Properties of Soils at UHF and Microwave Frequencies, J. Geophys. Res., 79, 1699–1708, 1974. 1450

³⁰ Hook, W. R., Livingston, N. J., Sun, Z. J., and Hook, P. B.: Remote Diode Shorting Improves

2, 1449–1502, 2005

Efficient and dispersive TDR



Measurement of Soil Water by Time Domain Reflectometry, Soil Sci. Am. J., 56, 1384–1391, 1992. 1450

- Huisman, J. A., Bouten, W., and Vrugt, J. A.: Accuracy of frequency domain analysis scenarios for the determination of complex dielectric permittivity, Wat. Resour. Res., 40, 1–12, 2004. 1451
- Ishida, T., Makino, T., and Wang, C.: Dielectric-relaxation spectroscopy of kaolinite, montmorillonite, allophane, and imogolite under moist conditions, Clays and Clay Minerals, 48, 75–84, 2000. 1451, 1464

Kunz, K. S. and Luebbers, R. J.: The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 2000 Corporate Blvd., N. W., Boca Raton, Florida, 1993. 1453

Levine, D.: Users Guide to the PGAPack Parallel Genetic Algorithm Library, Tech. rep., Argonne National Laboratory 95/18, 9700 South Cass Avenue, Argonne II 60439, 1996. 1452, 1459

Lin, C. P.: Analysis of non-uniform and dispersive time domain reflectometry measurement systems with application to the dielectric spectroscopy of soils, Wat. Resour. Res., 39, 2003. 1450, 1451

15 **145**

5

10

20

30

Nussberger, M., Benedickter, H. R., Bächtold, W., Flühler, H., and Wunderli, H.: Single-Rod Probes for Time Domain Reflectometry: Sensitivity and Calibration, Vadose Zone Journal, 4, 551–557, doi:10.2136/vzj2004.0093, 2005. 1465

Nyfors, E. and Vainikainen, P.: Industrial Microwave Sensors, ARTECH HOUSE, INC., 685 Canton Street, Norwood, MA 02062, USA, 1989. 1458

Oswald, B.: Full Wave Solution of Inverse Electromagnetic Problems – Applications in Environmental Measurement Techniques, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 2000. 1450

Oswald, B., Benedickter, H. R., Bächtold, W., and Flühler, H.: Spatially resolved water content

profiles from inverted TDR signals, Wat. Resour. Res., 39, doi:10.1029/2002WR001890, 2003. 1450, 1451, 1452, 1455, 1459, 1460, 1462, 1495

Oswald, B., Benedickter, H. R., Bächtold, W., and Flühler, H.: A single rod probe for time domain reflectometry, Vadose Zone Journal (VZJ), 3, 1152–1159, 2004. 1465

Pereira, D. S.: Développement d'une nouvelle méthode de détermination des profils de teneur

en eau dans les sols par inversion d'un signal TDR, Ph.D. thesis, Lab. d'Etude des Transf. en Hydrol. et Environ (LTHE), Univ. Joseph Fourier-Grenoble I, Grenoble, France, 1997. 1450 Rahmat-Samii, Y. and Michielssen, E.: Electromagnetic Optimization by Genetic Algorithms, Wiley Series in Microwave and Optical Engineering, John Wiley & Sons, 1999. 1459 2, 1449–1502, 2005

Efficient and dispersive TDR

- Ramo, S., Whinnery, J. R., and Duzer, T. V.: Fields and Waves in Communication Electronics, John Wiley & Sons, New York, 2 edn., 1984. 1451, 1452, 1456, 1457
- Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., and Friedman, S. P.: A Review of Advances in Dielectric and Electrical Conductivity Measurements in Soils Using Time Domain Reflectrometry, Vadose Zone J., 2, 444–475, 2003. 1450, 1464
- Robinson, D. A., Schaap, M. G., Or, D., and Jones, S. B.: On the effective measurement frequency of time domain reflectometry in dispersive and non-conductive dielectric materials, Wat. Resour. Res., 41, 2005. 1451, 1464
- Roth, K., Schulin, R., Flühler, H., and Attinger, W.: Calibration of Time Domain Reflectometry
- for Water Content Measurement Using a Composite Dielectric Approach, Wat. Resour. Res., 10 26, 2267-2273, 1990. 1451, 1463
 - Schlaeger, S.: A fast TDR-inversion technique for the reconstruction of spatial soil moisture content, Hydrol, Earth Syst, Sci. Discuss., 2, 971-1009, 2005.

SRef-ID: 1812-2116/hessd/2005-2-971. 1450

5

- 15 Sposito, G. and Prost, R.: Structure of Water Adsorbed on Smectites, Chemical Reviews, 82. 553-573, 1982. 1451
 - Taflove, A.: Computational electrodynamics: the finite difference time domain method, Artech House, Norwood, Massachusetts, 1998. 1452, 1453, 1458, 1470

Todoroff, P., Lorion, R., and Lan Sun Luk, J. D.: L'utilisation des algorithmes génétiques pour

- l'identification de profil hydrigues de sol a partir de courbes réflectrométrigues, C. R. Acad. 20 Sci. Ser. IIa, Sci. Terre Planetes, 327, 607–610, 1998. 1450
 - Topp, G. C. and Davis, J. L.: Measurement of Soil Water Content using Time-domain Reflectometry (TDR): A Field Evaluation, Soil Sci. Am. J., 49, 19–24, 1985. 1450

Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic Determination of Soil Water Con-

- tent: Measurement in Coaxial Transmission Lines, Wat. Resour. Res., 16, 574–582, 1980. 25 1450
 - Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic Determination of Soil Water Content Using TDR: I. Applications to Wetting Fronts and Steep Gradients, Soil Sci. Am. J., 46, 672-678, 1982a, 1450
- Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic Determination of Soil Water Content 30 Using TDR: II. Evaluation of Installation and Configuration of Parallel Transmission Lines, Soil Sci. Am. J., 46, 678–684, 1982b, 1450

Wollschläger, U. and Roth, K.: Estimation of Temporal Changes of Volumetric Soil Water Con-

HESSD

tent from Ground-Penetrating Radar Reflections, Subsurface Sensing Technologies and Applications, 6, 2005. 1451, 1462

- Yanuka, M., Topp, G. C., S., Z., and Zebchuk, W. D.: Multiple Reflection and Attenuation of Time Domain Reflectometry Pulses: Theoretical Considerations for Applications to Soil and
- ⁵ Water, Wat. Resour. Res., 24, 939–944, 1988. 1450

HESSD

2, 1449–1502, 2005

Efficient and dispersive TDR

2, 1449–1502, 2005

Efficient and dispersive TDR

P. Leidenberger et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
I	►I	
•	Þ	
Back	Close	
Full Screen / Esc		
Print Version		
Interactive Discussion		
EGU		

Table 1. Summary of boundary conditions.

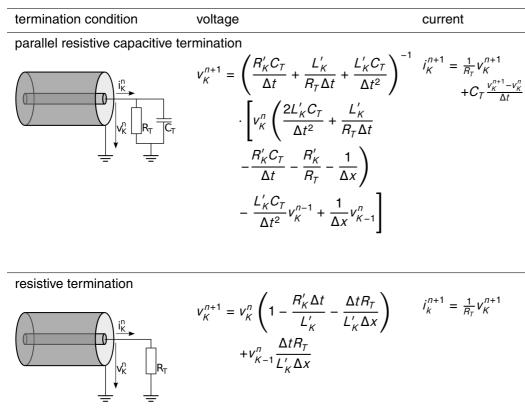
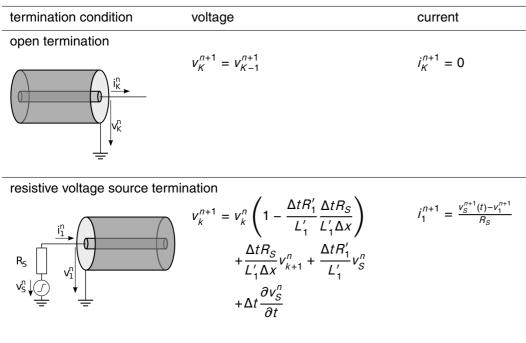


Table 1. Continued.



HESSD

2, 1449-1502, 2005

Efficient and dispersive TDR

2, 1449-1502, 2005

Efficient and dispersive TDR

P. Leidenberger et al.

Table 2. Parameters used for calculation of synthetic TDR traces for validating the termination condition and the dispersive media, for all: $\epsilon'_{\infty} = 10$, $\Delta x = 1.2 \cdot 10^{-3}$ m.

Figure number	$\Delta \epsilon'$	f _{rel} (MHz)	$\sigma'(\frac{s}{m})$	$R_T (\Omega)$	C_{T} (F)	t _{sec}
5	-	-	$1 \cdot 10^{-30}$	-	-	0.25
6	-	-	$1 \cdot 10^{-30}$	84	-	0.25
7	-	-	$1 \cdot 10^{-2}$	-	-	0.25
8	-	-	$5 \cdot 10^{-3}$	150	$5 \cdot 10^{-12}$	0.25
9	10	10	$1 \cdot 10^{-30}$	-	-	0.25
10	10	100	$1 \cdot 10^{-30}$	-	-	0.11
11	5	100	$1 \cdot 10^{-30}$	-	-	0.25

2, 1449–1502, 2005

Efficient and dispersive TDR

P. Leidenberger et al.

Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
[◄	۶I		
4	•		
Back	Close		
Full Screen / Esc			
Print Version			
Interactive Discussion			
EGU			

Table 3. Parameters used for hierarchical TDR trace reconstruction of laboratory traces.

optimization parameter	value
population size	50
crossover probability	0.6
mutation probability	0.01
bits for ϵ'_r	20
bits for conductivity	20
transmission line termination	resistive
termination resistor	214 Ω
TDR rise time t _{rise}	28 ps
spatial discretization	0.0005 m
time step security	0.9
TDR probe type	two rod
probe length	1.0 m
conductor diameter D	1.0 mm
conductor center distance d	30.8 mm

2, 1449–1502, 2005

Efficient and dispersive TDR

P. Leidenberger et al.

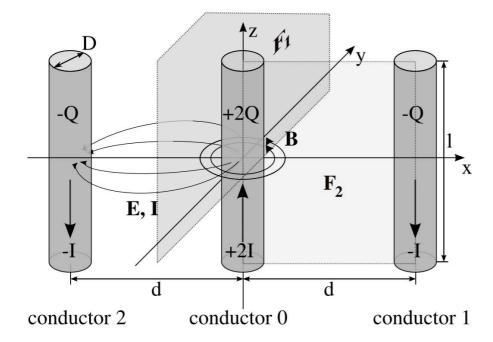
roduction ferences			
ferences			
igures			
I4 ►I			
•			
Close			
Full Screen / Esc			
Print Version			
Interactive Discussion			
EGU			

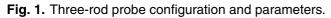
 Table 4. Parameters used for hierarchical TDR trace reconstruction of field data.

TDR/optimization parameter	value
population size	50
crossover probability	0.6
mutation probability	0.01
bits for ϵ'_{∞}	20
bits for $\Delta \widetilde{\epsilon}'$	20
bits for f _{rel}	20
bits for conductivity	20
bits for terminal resistor	10
bits for terminal capacitor	10
transmission line termination	parallel resistive
	capacitive, optimized
TDR rise time t _{rise}	460 ps
measured samples	251
time between samples	107 ps
spatial discretization	0.002 m
time step security	0.25
TDR probe type	three rod
probe length	0.3 m
conductor diameter D	4.8 mm
conductor center distance d	22.5 mm

2, 1449-1502, 2005

Efficient and dispersive TDR





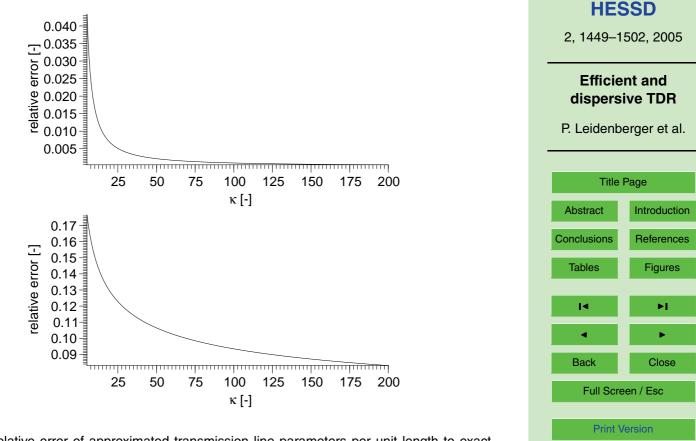


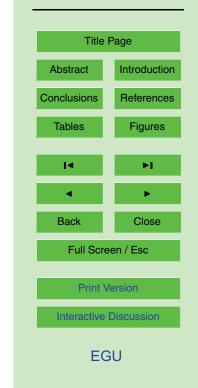
Fig. 2. Relative error of approximated transmission line parameters per unit length to exact parameters for two-rod probe as function of κ . Upper figure: Relative error of capacitance $C'_{2,approx}$ (conductance $G'_{2,approx}$) to $C'_{2,exact}$ ($G'_{2,exact}$). Lower figure: Relative error of inductance $L'_{2,approx}$ to $L'_{2,exact}$.

EGU

Interactive Discussion

2, 1449-1502, 2005

Efficient and dispersive TDR



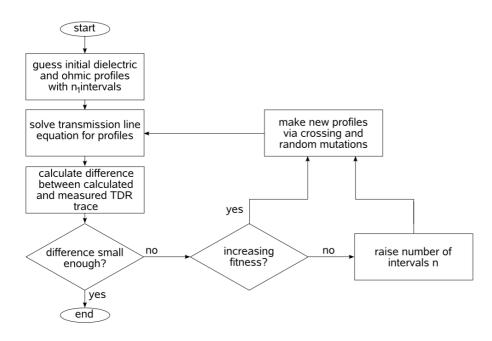


Fig. 3. Flowchart for the hierarchical optimization.

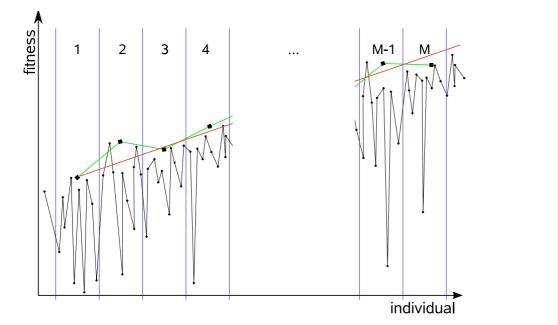


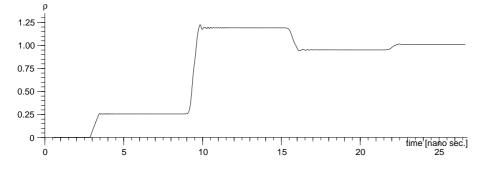
Fig. 4. Determination of the criteria when to increment spatial resolution.

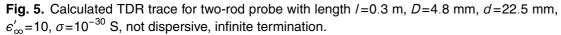
2, 1449-1502, 2005

Efficient and dispersive TDR

2, 1449-1502, 2005

Efficient and dispersive TDR





2, 1449-1502, 2005

Efficient and dispersive TDR

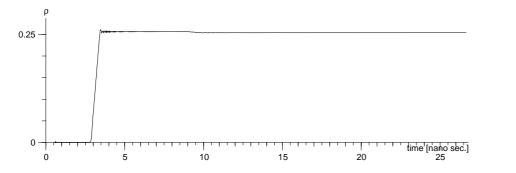


Fig. 6. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5 mm, $e'_{\infty} = 10$, $\sigma = 10^{-30}$ S, not dispersive, resistive termination, $R_T = 84 \Omega$.

2, 1449-1502, 2005

Efficient and dispersive TDR

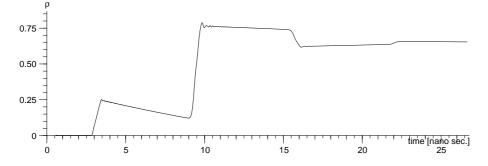


Fig. 7. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5 mm, $e'_{\infty} = 10$, $\sigma = 1 \cdot 10^{-2}$ S, not dispersive, infinite termination.

2, 1449-1502, 2005

Efficient and dispersive TDR

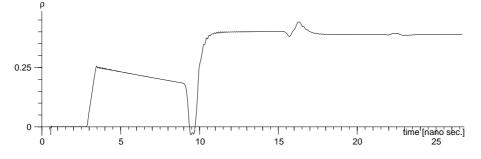


Fig. 8. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5 mm, $e'_{\infty} = 10$, $\sigma = 5 \cdot 10^{-3}$ S, not dispersive, parallel resistive capacitive termination, $R_T = 150$ Ω , $C_T = 5.0 \cdot 10^{-12}$ F.

2, 1449-1502, 2005

Efficient and dispersive TDR

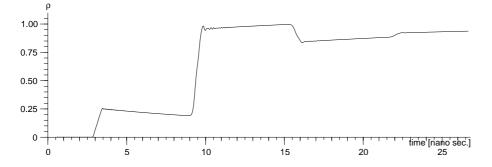


Fig. 9. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5 mm, $\epsilon'_{\infty} = 10$, $\sigma = 1 \cdot 10^{-30}$ S, infinite termination, dispersive media with $\Delta \epsilon' = 10$, $f_{rel} = 10$ MHz.

2, 1449-1502, 2005

Efficient and dispersive TDR

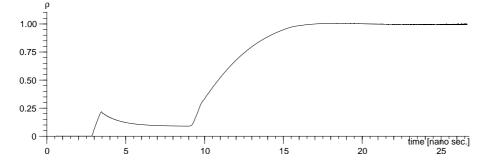


Fig. 10. Calculated TDR trace for two-rod probe with length / = 0.3 m, D = 4.8 mm, d = 22.5 mm, $\epsilon'_{\infty} = 10$, $\sigma = 1 \cdot 10^{-30}$ S, infinite termination, dispersive media with $\Delta \epsilon' = 10$, $f_{rel} = 100$ MHz.

2, 1449-1502, 2005

Efficient and dispersive TDR

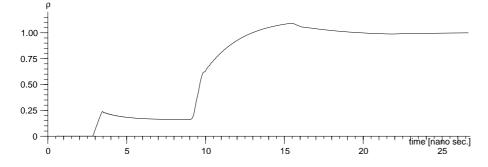
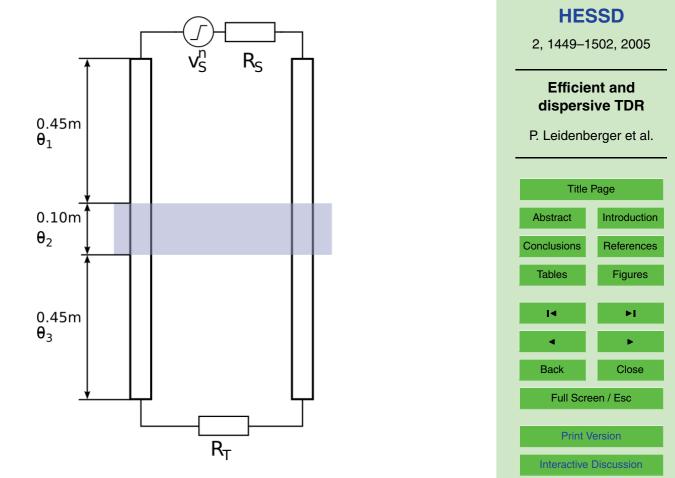


Fig. 11. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5 mm, $\epsilon'_{\infty} = 10$, $\sigma = 1 \cdot 10^{-30}$ S, infinite termination, dispersive media with $\Delta \epsilon' = 5$, $f_{rel} = 100$ MHz.



EGU

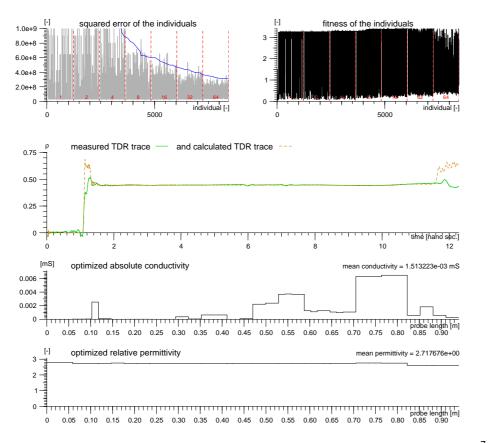
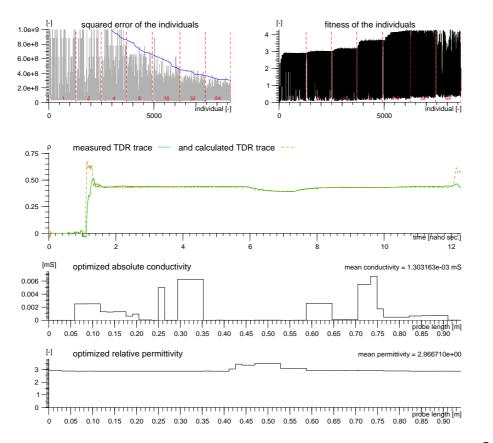
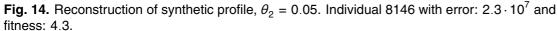


Fig. 13. Reconstruction of synthetic profile, $\theta_2 = 0$. Individual 7547 with error: $2.9 \cdot 10^7$ and fitness: 3.4.

2, 1449-1502, 2005 Efficient and dispersive TDR P. Leidenberger et al. **Title Page** Abstract Introduction Conclusions References Tables Figures Close Back Full Screen / Esc **Print Version** Interactive Discussion EGU

HESSD





HESSD 2, 1449-1502, 2005 Efficient and dispersive TDR P. Leidenberger et al. **Title Page** Abstract Introduction Conclusions References Tables Figures Close Back Full Screen / Esc **Print Version** Interactive Discussion EGU

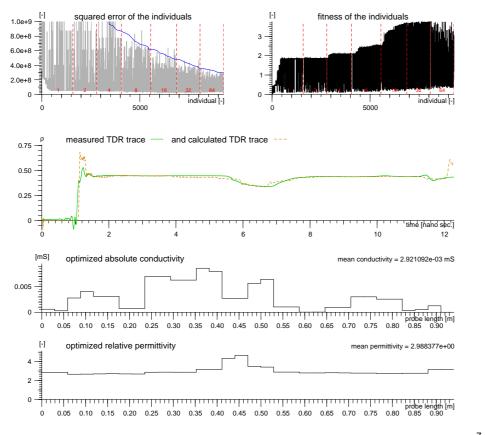


Fig. 15. Reconstruction of synthetic profile, $\theta_2 = 0.10$. Individual 7977 with error: $2.7 \cdot 10^7$ and fitness: 3.8.

2, 1449-1502, 2005

Efficient and dispersive TDR

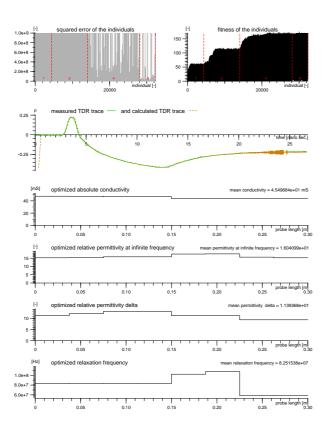


Fig. 16. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 1.41 m depth. Individual 32231 with error: $5.9 \cdot 10^5$, fitness: 171, terminal impedance: 600 Ω , and terminal capacitance $3.8 \cdot 10^{-17}$ F.

HESSD

2, 1449–1502, 2005

Efficient and

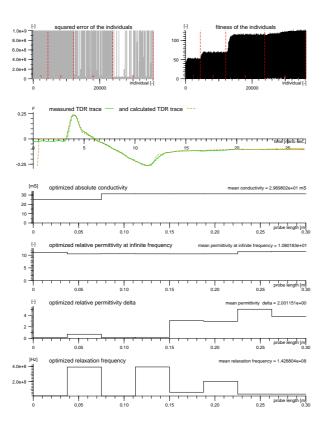


Fig. 17. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 0.72 m depth. Individual 35948 with error: $8.0 \cdot 10^5$, fitness: 125, terminal impedance: 189 Ω , and terminal capacitance $2.5 \cdot 10^{-17}$ F.

2, 1449–1502, 2005

Efficient and dispersive TDR

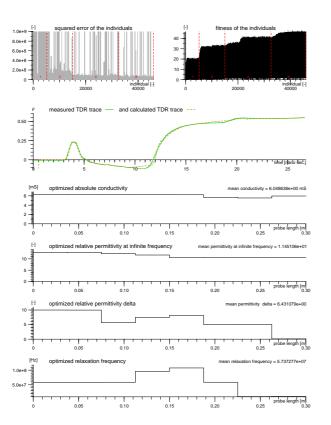


Fig. 18. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 0.13 m depth. Individual 45685 with error: $2.1 \cdot 10^6$, fitness: 47, terminal impedance: 580 Ω , and terminal capacitance $9.5 \cdot 10^{-18}$ F.

HESSD

2, 1449-1502, 2005

Efficient and dispersive TDR

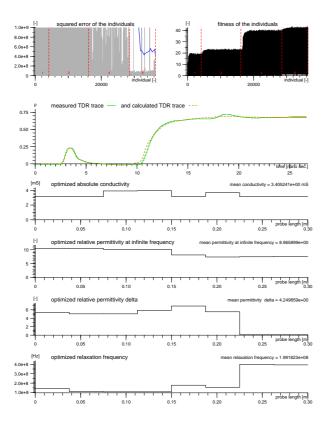


Fig. 19. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 0.30 m depth. Individual 36373 with error: $2.3 \cdot 10^6$, fitness: 43, terminal impedance: 600 Ω , and terminal capacitance $3.6 \cdot 10^{-17}$ F.

2, 1449-1502, 2005

Efficient and dispersive TDR

